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Coefficients representing edge rotation and displacement per unit
edge or surface load for shell elements of short length

Flexural rigidity of shells

Young's modulus of annulus and shell materials, respectively

Discontinuity shearing forces normal to axis of symmetry
Shell thickness

Length of shell element between stiffeners

Discontinuity bending moments in a meridional plane
Axial stress-forces due to axial portion of p

Hydrostatic pressure
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ABSTRACT

A theoretical analysis of the axisymmetric elastic deformations and
stresses in a web-stiffened sandwich cylindrical shell structure under ex-
ternal hydrostatic pressure is presented. The solution is based on the use
of edge coefficients for plate and shell elements of finite length, and in-
cludes the computation of the edge forces and moments arising at the
common junctures of these elements.

Equations are given for computing numerically the longitudinal and
circumferential stresses in the two coaxial cylindrical shells and the radial
and tangential stresses in the web stiffeners between the two shells.

No consideration was given to the discontinuity effects arising from
rigid or elastic restraints afforded by contiguous bulkhead or adjacent shell
structures. Thus, the analysis presented herein is applicable only to a
typical bay of a web-stiffened sandwich cylinder of long length.

A numerical example is presented to illustrate the use of the equations
developed in this report.

INTRODUCTION

The David Taylor Model Basin, under initial sponsorship by the Office of Naval
Research and later continuance by the Bureau of Ships, has been investigating the feasi-
bility of sandwich-type construction for pressure hull application. Results of exploratory
experimental studies carried out under this program! have shown that in‘certain ranges of
geometry strength-weight advantages on the order of 20 to 25 percent higher can be realized
with sandwich designs over the conventional ring-stiffened cylindrical configuration. These
results were obtained from model tests of sandwich-type cylinders having ‘‘hard’’ cores; i.e.,
the cores were capable of developing high compressive strengths in addition to transmitting
the pressure loading by shear from the outer to the inner shell.

At the time these sandwich cylinders were concoived, no formulas were available on
which to base an optimum design; merely intuition and engineering judgment were resorted
to for proportioning the structural elements. Concurrently with the experimental program,
analytical studies were initiated to develop rational formulas based on thin-shell theory for
predicting the elastic deformations and stresses in the structural elements of such sandwich-
type cylinders.

In this report, equations are developed for carrying out a complete stress analysis of
a typical portion of a web-stiffened sandwich cylinder under external hydrostatic pressure.

lRel‘omcn are listed on page 37.



The method is based on the use of edge coefficients of plate and shell elements of finite
length, and satisfaction of force and moment equilibrium and compatibility of deformations
at the common junctures of the elements comprising the structure. Expressions for edge
coefficients of cylindrical shells of short length are developed in Appendix A.

GENERAL CONSIDERATIONS

Methods of analysis based on the use of edge coefficients have found wide application
in studying stresses and deformations in complex structures composed of ring, plate, and shell
elements.2~5 The underlying concept in this type of analysis is that a complex physical
structure can be broken down into identifiable components for which mathematical solutions
exist or can be found readily. The deformations occurring in each structural element are deter-
mined in terms of unknown forces and moments assumed to exist at the junctures common to
these elements. Conditions of equilibrium and compatibility are then satisfied at each of the
junctures, thus permitting determination of the redundant forces and moments. With this
information, a complete stress analysis for each structural component can then be perfo‘rmed.

The present problem of the stresses in a web-stiffened sandwich cylinder subjected to
hydrostatic pressure, shown in Figure 1, can be solved rather conveniently by the use of edge
coefficients, The identifiable structural elements in this case are two coaxial cylindrical
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Figure 1 — Web-Stiffened Sandwich Cylinder
Subjected to External Hydrostatic Pressure
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shells, one subjected to radial pressure and an end load and the other to an end load only,
and annular discs subjected to radial loads on the two circular boundaries. The webs or
annular discs act as the connecting and stiffening members to the two shells. A free-body
diagram showing the breakdown of the physical structure to its component parts, together
with appropriate, but as yet unknown, edge forces and moments, is presented in Figure 2.



-—

Juncture | 1

Outgide Shell

LN /lgu"uu L
n o s CoEExTITho

Figure 2 — Free-Body Diagram Showing %l &
Forces and Moments Acting on Shell "" I _T
and Web Elements of Web-Stiffened Wab
Sandwich Cylinder _L

ot T

2 Juncture 2

Following the method of References 2, 3, and 4, the deformations occurring at the
edges of a shell element of general meridional shape can, by simple superposition, be written
in terms of the unknown edge forces and edge moments and known applied loading as follows:

w;=dM; + 9,Q; + fiP; +f’'p, +f{”’P, + d; M+ 9@ + [P (1]

iy

O, =aM;+5,Q; +c/P; + ¢ p+c"'P+aM+bQ+cP 2]

where the coefficients a;, b, . . . f{’"are the amount of transverse deflection or meridional
rotation, as the case may be, per unit bending moment, shearing force, axial force, or surface
pressure loading, as shown in Figure 3. The coefficients with the double subscripts, i.e.,

Figure 3 — Shell Element of Arbitrary
Meridional Shape Subjected to Edge
Moments, Shears, Forces, and
Surface Loading

o bi‘j’ R fl.’i, are the interaction coefficients which reflect the deformations at edge *‘¢”’
due to forces and moments at edge *‘j.’* By replacing ¢-j and j- 1 in Equations [1] and [2],
expressions for the deformations ©; and 01. can be written immediately.

Note that the effect of the end load P on the deformations w; and 6, has been separated
into three distinct components. The components denoted by the single-primed coefficients
f{ and ¢/ are those due to bending effects. The same is true of the components associated

with the coefficients f and c;;, but these also reflect interaction influences. The components

ij?




denoted by the triple-primed coefficients f/*’and ¢/’ are essentially Poisson effects on the
membrane deformations.

For the specific problem of cylindrical shell elements symmetrically loaded, as shown
in Figure 4 and considered in this report, Equations [1] and [2] become:

crotly
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dx
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Figure 4 — Sign Convention for Cylindrical-Shell Element (Symmetric Case)
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6; aMs+b——+cPs+c c/"FP° + a M‘+b '+c’Ps [4]
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and similar expressions for w; and 0’., respectively, However, for the case of a cylinder some
of the terms appearing in Equations [3] and [4] become zero; this will be shown later. In
addition, for the pressure loading shown in Figure 1, where the inner cylindrical shell is not
subjected to the radial pressure loading, those terms in Equations [3] and [4] that are multi-
plied by p will drop out when the deformations of the inner shell, i.e. ¢ = 2, are considered.
Following the same technique employed for the shell elements, the deformations

occurring at the edges of the circular annuli or web elements, as shown in Figure 5,
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can be written in terms of the unknown edge forces and moments and known applied loading
as follows:

wf = g;.d H;.‘ + g’?iH’} (5]

0“-4 = af M‘f + cfPiA + d;-‘p + a"fiM;-4 {6]
where it has been assumed that the edge moments M:.‘, axial thrusts I:.A, and surface pressure
p do not give rise to any radial displacement w in the plane of the circular annulus. Equations
[5]1 and (6] give the deformations at boundary ¢ of the circular annulus; the deformations at the
other boundary, say j, can be obtained by replacing ¢ by j and j by ¢ in Equations [5] and [6].
The expression for the edge rotations 0:.4 and 0;.4 of the annulus are rather general to include
the case in which the sandwich void between the two cylinders may become pressurized. This
problem will not be considered in this report. In a later section, it will be shown that due to
symmetry the edge rotations of the annulus are zero. Furthermore, for the particular case of
pressure loading shown in Figure 1 and considered in detail later including a numerical ex-
ample, not only are the edge rotations 0’? and 0;.4 equal to zero but every term in expressions
[6] is zero. In such a case it is tacitly assumed that the web stiffeners act only to resist
hoop compression and do not act in the sense of a circular plate to resist bending due to edge
moments and edge shears.

In Reference 4, for instance, equations were developed for computing discontinuity
stresses at cone-cylinder junctures, either with or without transverse reinforcement. For
that problem it was tacitly assumed that the shell elements were each of semi-infinite length
so that the deformations at their common juncture were not influenced by boundary effects at
the others ends. This permitted the use of rather simple expressions for the edge deformations.

For the present problem of the web-stiffened sandwich cylinder, the elements com-
prising the structure are of such proportions that interaction of internal edge effects is very
predominant. This necessitated the development of edge coefficients for cylindrical shell
elements of finite length. However, it turns out that the forms of the new coefficients are
exactly the same as those of Reference 4 except for multiplying factors which are functions
of the shell geometry and, primarily, the length. These edge coefficients for a cylindrical
shell are written in the following convenient form:

1
ESa. =+

{2]
i DB, A (B

ESb, = - Al g,

rn2
203

Efc/=Ec]/"=Ec[""=Ef/=0
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The “‘lambda’’ functions AP], AEﬂ, AE.3], ... AEG] appearing in the edge coefficients,

Equations [7a], are derived in Appendix A and are defined here as follows:

inh2 12
sinh® B, + sin” Bl

Atkg -
sinhzﬁil ~ sin? B

cosh 8,1 sinh 8,1 + cos 8,1 sin B,

A7k, -
sinh? 8,1 - sin?B,1



cosh 8, sinh B,/ - cos 8,1 sin 8,1

APABD -
sinh? 8,1 - sin? B!
(8l
2sinh 8,0 sin 8,1
A -
sinh? Bl - sin? Bl
(s] coshB8,l sin 8,1 ~ sinh 8,7 cos 8,1
AF(BD) =
sinh? Bl - sin? B!
(6] cosh 8,7 sin 8,/ + sinh B, cos 8,1
A,' (ﬁil) =

sinh? B~ sin? Bl

For convenience and ease of calculation, numerical values of the ‘‘lambda’’ functions in [8]
were determined with the aid of a Burroughs E-101 computer for a range of 8,/ from 0.40 to
2.50 in increments of 0.02. The results were tabulated and are given in this report as Table 1.

For the special case of a cylindrical shell of semi-infinite length, i.e., I+, the
interaction functions given by Equations [8] simplify to

ALl 2 Al2) _ AlS] g
(9]
Als) _ Als] _ alsl g

and the edge coefficients given by Equations {7a] reduce exactly to those given in Reference 4.
From symmetry considerations it is seen that the edges of the web stiffener, which for
purposes of analysis is viewed as a circular annulus, do not undergo any rotation. This stems
from the fact that a horizontal tangent or zero-slope condition is assumed to exist at the
junctures of the webs with the two cylindrical shells. This assumption implies that the edge
moments on each shell at the shell-web junctures balance each other, so that there are no net
moments to be resisted by the web. Further, it is assumed that the web elements do not take
any axial force due to the axial pressure, but that this is all resisted by the cylindrical shells.
Thus, the analysis of the web stiffener is reduced to that of a circular annulus subjected to
axisymmetric in-plane radial forces on both its inner and outer boundaries;% see Figure 2.
On the basis of these assumptions, it is necessary to derive edge coefficients for an annulus
undergoing radial deflections only. Such coefficients are developed in Appendix B and are
given here as follows:
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Br=fyr g i Bam oo
[10b]

(1+v) R R}

g
hy (RE-R2)

COMPUTATYION OF STRESSES

The formulas given herein for determining the longitudinal and circumferential stresses
in the shell elements of the web-stiffened sandwich cylinder are developed in Appendix C.
Formulas for the radial and tangential stresses in the web elements are developed in Appendix
B. The derivation follows very closely the general analysis of Reference 7 for ring-stiffened
cylinders under hydrostatic pressure, the only differences arising from the elastic restraints
at the shell edges and the distribution of the axial pressure loading.

The nomenclature and sign convention used in Reference 7 and in Appendix C of this
report are shown in Figures 2 and 4. A longitudinal bending moment M_ is considered posi-
tive if it tends to put the outer surface of the shell in tension, and a transverse shearing force
@, is considered positive when it acts in a direction away from the axis of symmetry but in
the positive a-direction. A hydrostatic pressure p is considered positive when it is external,
and negative when internal. With reference to Equations [1] and (2], the subscript ¢ is used
to distinguish the two cylinder elements.

The quantities H; and M, shown in Figure 2 are the edge shearing forces and bending
moments arising at the junctures of the shell elements with a web stiffener. They may be
determined in terms of the geometry and elasticity of the structure and the pressure loading
by enforcing conditions of force and moment equilibrium and compatibility of deformations
at the junctures. This determination is developed in the next section.



Once the edge forces and moments are known, the following formulas may be used for
determining the critical longitudinal and circumferential shell stresses which occur at a point

midbay between two adjacent webs and also at a web location, respectively:

AT MIDBAY:

B E*h B2 ALslg 1/2)
oy == — F (WP ~w?) ———— (11]
Uk a-wy T Al e
B ps ) Aledg 1/9) _ vEWB? oty Alslg,1/2) o)
og, =—V— + — (~-w, ¥ wP - ¢}y ————o
U R T gy aay T Ak
AT A WEB: E . E"h‘- B‘_Z A|;:3](B‘_l/2)
I e e—— e e———— P - ‘? e —————
B g , VE'B] . ABRg;1/2)
o=~V — +— (~w})E ——— (0P -w}) ———— [14]
of b R; (1-12) ! AE2](B’,Z/2)

where in the above equations 7 = 1, 2, and the upper sign is for the outer fiber and the lower
sign for the inner fiber of each shell plating. Equations [11] through [14] are developed in
Appendix C.

Once the critical stresses are determined from Equations [11] through [14], the
question as to how they combine to precipitate axisymmetric collapse of the cylindrical shell
elements can be answered by recourse to the failure criteria discussed in References 7 and 8.
This will not be discussed here.

The quantity F; in Equations [11] through [14] is the axial load taken by each of the
two cylindrical shells. On the assumption that the two shells contract the same amount
longitudinally, it is shown in Appendix D that

10



R. A vE*h vE*h
1 %1% 2 1 -4 1 4 =4y va
pR, [ v(1-A)+ = — (1-v*a,) | + (91 Hy+97 H)Ay~ —— (93 Ha+9; H)a,
1[ 177 2 R,h, 2 R, R,
A Ryhy

1-v2a, + (1-v2a,)
272

[15]

B, 1R, vE® by _ vE*R,h, . )
PR, | -v(1-a) = +'E = (1-v2a,) | - = (93H, +F{H)a + - (910, +3in) a,
2 2 2 Rz

B -
2
A,

1-v2a, + (1-v*a)

272

The quantities @, and @, are given in Appendix D by Equations [D.13].

The quantities wf in Equations [11] through [14] represent the particular integrals to the
differential equations governing the axisymmetric deformations of & cylindrical shell; they are
easily determined from membrane theory. For the case shown in Figures 1 and 2, where the
outer cylindrical shell (but not the inner one) is loaded by lateral pressure, we find that (see
Reference 7, for example)

(16]

where the axial forces P, and P, are given by Equations [15).
The shell edge deflections w; appearing in the stress formulas, Equations [11] through
[14], are determined from Equation [3] once the edge shears H; and edge moments M; are
known; i.e.,
H, - Hy
wi =diM; +g, 5t KR+1{'p+ "R +d My + g, =<t R
(17)
Hy - - Hy
wy =d)My + 9, - 7 IR+ 1'p+ "B +d M+ 9, e +125
where the interaction coefficients have been designated by a ‘‘bar’’ instead of the double sub-
script so as not to confuse the use of the subscripts ‘‘1”’ and ‘‘2"’ to designate the two shells
and their respective junctures with the web stiffeners. This notation will be used in all the
equations that follow.
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Expressions for the radial and tangential stresses in the web elements are developed
in Appendix B. It is shown there that the maximum radial stress occurs at the intersection

— 1
with the outer cylindrical shell (i.e., atr=FR =R, + ry ) , and the maximum tangential

~ - 2
stress occurs at the intersection with the inner cylindrical shell (i.e., atr=R,=R, - —2—) .
These maximum stresses are given by the following expressions:

4 [ 7
o, = £ A(l+y) - __i (1-v) [18]
max (1_v2) l2
4 -
o, = £ A(l+v) + :B— (1-v) [19]
max (1__v2) L 322 J

where the constants 4 and B are given by

D 2 2
R{ - R;
(20]
Ap Ap
- FF ("’2 1~ %1k, )
RS b = =
2 2
Rl - RZ
and the annulus edge deflections wf and w2“1 by Equation [5] as
A A poy
wy =gy Hy+9rH,
[21]

w;=9;H2+g—’:Hl

In Equations [21] the edge coefficients designated by a ‘‘bar’’ are the interaction or double-
subscript coefficients; i.e., g-f = gi‘z and g_zA = gé‘l. The edge coefficients appearing in
Equations [21] are given by Equations [10].

DETERMINATION OF EDGE SHEARS H; AND EDGE MOMENTS ¥,

For the case of symmetry on each side of a web stiffener, the conditions of force and
moment equilibrium at each of the two junctures of the web with the shells are rather obvious;
these are shown in the free-body diagram of Figure 2. There remains to determine the unknown
edge shears H, and H, and unknown edge moments M, and M, by enforcing conditions of com-
patibility of the deformations at the junctures labeled ‘‘1’’ and *‘2.”
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Continuity and symmetry conditions at joint ‘‘1’’ require that
A
w) = w (22]

05 =68 =0 [23]

A
65 =64 =0 [25]
Substituting Equations [3], [4], [5], and [6] into the four conditions [22] through [25],
considering the zero edge coefficients by virtue of the loading shown in Figures 1 and 2 and

Equations [7], and assuming that £ = E4, we must solve the following four algebraic equations
simultaneously to determine Hy, Hy My, and M,:

r 1 - - Py ryY)
M, ldy+d)] + ”1[3 (91“91)‘-‘7{4] +H, ["glA] =-fi?-1{"R (26]

Myla,+a]l+H, [% (61*;1)] =0 [27]
- 1 — -
M, d,+d,)] + H, [5 (9,+9,) - gé‘] +H, [-—g.f] =-f"F (28]
- 1 - |
M,la,+a,] + H, [2— (by+ bz)] =0 [29]

where F, and P, are given by Equations [15] to be functions of the unknown shearing forces
H, and H,. Equations [26] through [29] can be rewritten as two equations in only two
unknowns as follows:

(by+5,) (d, +d,)

1
—- a7 A ~A 'y oo
H1[2 (9,+9,) - 97 - 2 (e, +3) J+ Hyl-g{1=~f!%-f/"”F [30]

i 1 _ (by+5,) (dy +dy)
Hy [‘9;]*'”2 [:E (92*-‘72-)‘95‘ - 22(a2+52) =-1,"F, (31]

13



By the substitution of the expressions for P, and F, given by Equations [15] into Equations
(30] and [31], the two simultaneous equations to be solved for H, and H, become:

- e -
1 -
- - A oA - — a4
) (b+ b)) (dy+dy)  VER, Wi T S92 )
H — - - - —_ {44 +
1 2(91+91) 2 2 (a, +a,) ¥ R, h LN '
2 2
1-via, + (1-v*a,)
L 272 .J
- -
g g R | 1-a) lklhla 2q)
- — - - — -
. vESH lgl R2 2g2 P 1 1 2 thZ ¥
-91+ 7 Iy 7o, =-fi'p-1; ' R,
1-12a, + (1-v2a) 1-v2a, + (1-r»2a)
1 2 1 2
- Bahy B Rk,
AL g ]
-4 vE®hy o Wi R, 4o
Hyl-97 + R 12” +
2 thl
1-2a, + (1-v2a)
— 272 -
I A k, y i
- - -a,78+ — a
1 A (6,+8,)(dy+dy)  vESR, Ny * R, 22
H - +‘ - _ - rer
2|5 (92+92) =9 S(a,ea) B, D R
1-v2a, + (1-v2a)
L. 272 N
R R
1 1 ™
2 ‘
pRl[-v(l—dl) ?2' + Y 72: (1-v al)]
=-f" B A (33]
171
1-v2a, + - (1-v2a))
272

After the edge shears H, and 4, are determined from Equations [32] and [33], the edge moments

M, and M, may be found from the following expressions as a consequence of Equations [27] and

[29], respectively: -
(6,+0))

My==Hy ———— (34]
2 (ay +a,y)

(by+5,)

My=-H, —————
2 2 2 (ay+a,)

[35]
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NUMERICAL EXAMPLE

As part of its research and evaluation program to study the application of glass-fiber
reinforced plastics for pressure vessel construction, the Model Basin in collaboration with
Narmco Industries Inc., San Diego, California, is presently designing a series of web-stiffened
sandwich cylinders made of these materials. The structural models are to be fabricated by
Narmco and then forwarded to the Model Basin for testing.

One of the designs, Model N-1, presently being conceived will be used as a sample
calculation to illustrate the use of the equations developed in this report. The detailed
dimensions are shown in Figure 6, and are summarized here:

h = 0.142°
"L T T o] T
Figure 6 — Schematic Diagram Showing —L. ouzer T 0TS 0.298" ’I‘" . 3.493"
Dimensions of Model N-1 '

hy = 0.142 in.; A, =0.124 in.; A, =0.107 in.
R, =3493in; R, =3.062in.; ! =0.648 in.
B, =3.564in.; R, = 3.000 in.

E* = 6.0 x 105 psi = E4
v=0.15

Using Equations [7b] for each of the outer and inner cylindrical shells, respectively,
we compute the values of 8,l and D/ to be:

Bl =1.204; D/ =24.407 x 105 in.?
B,l = 1.376; D =16.257 x 10~ % in.3

The lambda functions are either computed by using these values of 8,/ and Equations [8] or
are found by interpolation from Table 1 for each of the two shells. They are summarized here:

A1l | Al2d | A1 | Alal | Als) | Alel

Outer Shell | 2.219 | 2.162 | 1.694 | 1.081 | 0.8061 | 1.567
Inner Shell 1.778 | 1.655 | 1.502 | 1.471 | 0.6906 | 0.9805
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Next, the shell-edge coefficients E*a,, E*b,, E*c/', .

Equations [7a]. The numerical values thus found are summarized here:

. . etc., are computed by using

Shell Edge Outer Shell Inner Shell
Coefficient (i=1) (i =2)
Efa;, in"2 | + 0.4767 x 10* | +0.4795 x 10
E*b,, in."! - 0.1317 x 104 | -0.1213 x 10*
E*e;=E*c/ 0 0
ESd,in~! | + 01817 x 10 | +0.1213 x10*
E*f/ 0 0
E*f, in. +85.9229 nonexistent
E*f; ~ 3.6898 -3.7040
E*g, - 0.05410 x 10* | -0.04822 x 10*
E*a, in."% | - 0.3455 x 10* [ -0.2840 x 10*
E®b, in."! | + 0.1176 x 10* | +0.1003 x 10*
E*d, in."' | - 0.1176 x10* | -0.1003 x 10*
E*f; 0 0
E*g, + 0.02575 x 10° | +0.02217 x 104

The web stiffener or circular annulus edge coefficients EAgf, .

using Equations [10], and the numerical results found are:

. . etc., are computed by

EAgl = 190.261
EAgf = EAgl, = 161.949
E4gf = 168.564
EAgH = EAg4 - 192.306

The components of the end pressure loading taken by each of the outer and inner
cylindrical shells, respectively, are computed to be, using Equations [15]:

P, = +0.9843p Ib/in.
P, = + 0.8695p 1b/in.
With all this, the edge shear forces H, and 4, are computed by solving Equations [32]
and [33] simultaneously. The values thus found are then substituted into Equations [34] and

(35] to determine the edg. bending moments M, and ¥,. The numerical values thus found are:

H, = +0.3893p Ib/in.
H, = - 0.2717 p 1b/in.
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M, =+ 0.02095p in.-lb/in.
M, = ~0.01459 p in.-1b/in,

When the edge shear forces and edge bending moments are known, the edge deflections
of the two cylindrical shells and those of the web stiffener, at their common juncture points,
are found from Equations [17] and [21] to be:

E*w] =+30.072p 1b/in.
EAwf = +30.072p 1b/in.
E*w} =+ 29.105p Ib/in.
EAwf = +29.105p 1b/in.

Comparison of E*w; with EAwlA, and E*w; with EA w,f affords a check on the numerical
calculations, since the boundary conditions [22] and [24] enforced at the two junctures
require them to be equal in their respective cases since it was assumed that £S5 = £4,

The maximum radial and tangential stresses in the web stiffeners can now be com-
puted by using Equations [18], (18], and [20]. The values found are:

o, =~ 8.638p 1b/in.2
max

o, =~10.083p lb/in.?

Before the shell stresses can be computed, it is necessary to determine the membrane
deflections of the two shells. This is done with the aid of Equations [16]. The values found
are:

E*wf = +82.291 p Ib/in.
E*wh = - 3.2205p lb/in.
Finally, the critical longitudinal and circumferential shell stresses at points midbay

between two adjacent web stiffeners and at a web stiffener are determined by using Equations
11}, [12], [13], and [14]. The numerical values are summarized as follows:

Oxm P8I | 0gm P8I Tx psi I p psi

Outer Shell {| -10.039p |-10.437p | -13.166p | -10.584p
Inner Shell | -~ 9.843p |-12.702p | -12.704p [ -18.514p

For the numerical example considered, the calculations already carried out have been
based on the assumption that all structural elements have the same elastic modulus £. How-
ever, in the fabrication of a shell structure such as this, it is conceivable that the elements
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could have different material properties. In the case of Model N-1, which is to be made of a

glass-fiber reinforced plastic, it is expected that the web stiffeners, although made of the

same basic material as the cylindrical shells, will have a higher elastic modulus by virtue of

the fiber distribution. Assuming that the modulus of the web material is 50 percent higher
than that of the shell material, i.e., EA = 1.5 E5, we repeated the calculations and found the

following results:

P, = +0.9842p 1b/in.
B, = +0.8696 p 1b/in.

H, = +0.4166 p 1b/in.
H, = ~ 0.2449 p 1b/in.

M, = +0.02242p in.-1b/in.
M, = - 0.01315 p in.-1b/in.

Efw} =+ 26.406 p lb/in.
EAwi4 = + 39.609 p lb/in.
Ew; =+25.919 p lb/in.
EszA = + 38.878 p Ib/in.
E‘wf =+82.291 plb/in.

ESwp =- 3.2211p lb/in.
o, == 3.804p1b/in.?
max
o, =-13.303p1b/in.?
max
Oxmr P8I | Opp» PSI oxp psi LY psi
Outer Shell ] -10.256p |- 9.442p | -13.603p | - 9.600p
Inner Shell § - 9.565p [-11.658p | -12.144p | -12.390p
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APPENDIX A
DERIVATION OF THE FUNCTIONS Al1], Al2], Al3], Al4], Als], AND alé)
If the beam-c Jlumn effect” due to the axial portion of the hydrostatic pressure is

neglected, then the differential equation governing the axisymmetric elastic deformations,
based on small-deflection theory, of a thin-walled circular cylinder is given by:’

dt h
D—:D+E—;w=Pr—%Nx [A.1]
dz R

The homogeneous form of Equation [A.1] will be used to derive edge coefficients for cylin-
drical shells of short length in which interaction effects between the two ends of the shell
prevail, Then we have

+E — w=0 [A.2]

The solution’ of Equation [A.2], which solution describes the bending deformations, can be

written in the form:

w,(2) = C, cos Bz-cosh Bz + C,sin Bz.cosh Bz

. : : [A.3)
+ Cycos Bz-sinh Bz + C, sin Bz.sinh Bz
and the first three derivatives of [A.3] are:
1 du,
-'é- e = (C,+C,)cos Bz-cosh Bz + (C,~C,)sinBz.cosh Bz
+(C4+C )cos Bz-sinh Bz + (C,~C,)sin Bz sinh B2
— 5 C,cos Bz.cosh Bz - C;sinBz-cosh Bz
27 de (A.4]

+ C,cos Bz-sinh Bz - € sin Bz-sinh Bz

3
1 dwb

=(C,-C;)cos Bz.cosh Bz - (C, +C,)sinBz-cosh Bz
283 42’
+(C,=C )cos Ba-sinh Bz - (C, +C,)sin Bz-sinh Bz
¥3(1-12)
VRE

where in Equations [A.3] and [A.4] we have 8 =
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The integration constants C,, C,, C,, and C, appearing in Equations [A.3] and [A.4]
will be determined from a consideration of the load boundary conditions at the edges of the
shell element; see Figure 4. The longitudinal bending moment ¥, and the transverse shearing
force @, are related to the derivatives of w,() by the following equations:

dzwb
M _=+D
=77 dz?
[A.5]
M, P,
Q.= =+0D
dz dz?

With reference to Figures 4 and 7, let it be prescribed that the load boundary con-
ditions are given by:

QL Qn

LM . wp-d \Mn Figure 7 — Edge Shears, Moments,
Lett W) Eage (TgyI) Right (R) Edge Deflections, and Rotations For

" a Cylindrical-Shell Element

l

ata:=+-2-: M, =Mp; @, =¢@g [A.6]
l

at.z‘=—-2—: Mx=ML;‘Qx=QL [¢A-7]

No considerations of symmetry with respect to the point 2=0 have been taken in writing the
solution Equation [A.3], and in formulating the boundary conditions, Equations [A.6] and [A.7].
The development to follow will be general in this sense.

The substitution of Equations [A.4] and [A.5] into the boundary conditions, Equations
[A.6] and [A.7], results in the following four equations:

M
R l l l l
= C,cos B— . cosh ﬁ—— C,sin B— .cosh E—
2062 2 2 2
l ! ! i
+ C,cos % .sinh -P;— - Clsin —‘i- . sinh -B—

20



! l l l
= (€,~-C,)cos B— - cosh B— = (C4+C)sin E— . cosh i
! l (] l
+(C4=-C)cos %— « ginh é— -(C,+Cy)sin !32_ «sinh %
[A.8]
M
L ! l Bl Bl
= C,cos E . cosh B— + Cysin — .cosh —
l l B l
- C,cos —B— . sinh -é—— - C,sin — .sinh B—
2 2 2 2
-4 Bl Bl 8l 81
=(C,-C;)cos — «cosh — + (C, +C,)sin — .cosh —

Bl

Bl Bl 8l
—(04-01)005'? - 8inh —2- -(€,+Cy)sin ? - 8inh Y

Solving Equations [A.8] simultaneously gives the following expressions for the four
inteyration constants €y Cy Cgy8nd C

(Qr+€Qp)
C,(sinh Bl+sin Bl) =~ SR cos ﬁ - cosh EE
2DB3 2
(Mg +Mp) gL . Bl . Bl Bl)
+ ————— {c0os — .s8inh — -~sin — .cosh —
. . (Qr+€L) g1 i
C,(sinhBl+sin Bl) == ————— sin — .sinh —
(Mg +My) Bl . Bl . Bi Bl
—_— (cos — .s8inh — +sin — .cosh ——)
2DB2 2 2 2
[A.9]
(Qr-€¢;p)
C,(sinh Bl-sin Bl) =~ Ry sin ﬁ «cosh ﬁ—l
2033 2 2
(M, ~Mg)
- ——L—R (cos -B—l . cosh -B—l +8in B—Z . sinh B—l)
2062 2 2 2 2
(Qr-€1)
C,(sinh Bl ~sin B8) =~ SR cos ﬂ - sinh ﬂ-
20/33 2
My -Mp)
- L—R (cos E—l .cosh B—l -8in ﬁ . sinh ﬁ)
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If Equations {A.9] for the integration constants are substituted into the deflection
function, Equation [A.3], and the resulting expression is then evaluated at the two edges of

l
the shell element, i.e., at & =% K for the right and left edges, respectively (see Figure 7),

the following equation is obtained:

I (QR +QL)
— =~ ———— (coshBl+cos Bl)(sinh Bl-sin 81)
2 4Dg3

(Qr-9.)
4Dg3

Mg +Mp) ‘ ' )
+ ———— (sinh B!-sin BIl)
4Dg?
(ML‘MR) . . 2
5 ———— (sinh 8l +sin Bl)
4Dp?

(sinh? 81 ~sin 6l)[wb]

x=%

+

(cosh Bl -cos BI)(sinh B +sin B8I)
[A.10]

l
The bending component of the total deflection at the right (R) edge, i.e., at z =+ 2 is

then expressed in terms of the applied edge shears and edge moments by the following:

Qr cosh B1.sinh Bl -~ cos B81-sin Bl
[wb]R 3 ( 2 - )
2DB sinh? 87 - sin? 81
( cosh B1.sin Bl - sinh 81 cos B! )
2033 sinh? 8! - sin2 B/
[A.11]
Mg < sinh? 81 + sin? 31 )
2032 \ sinh? g] ~ sin? BI
M ( 2sinh 81 . sin 81 >
21)32 sinh? 81 - sin? g}
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I
The bending component of the total deflection at the left (L) edge, i.e., at =~ — , is then

2
expressed in terms of the applied edge shears and edge moments by the following:

Qr cosh B1.sinh B! - cos B1.sin 81
[wb]L =- < )

2Dg3 sinh? I - sin2 g1

Qr ( coshB?.sin 81 - sinh 81+ cos BI )

2033 sinh? 81 - sin2 g1

[A.12]

M, ,sinh?Bl +sin2B1

21)/32 ( sinh? 81 - sin? 31 >

Mg 2sinh 81 . sin B >
2DR? ( sinh? 81 - sin2 g1

Comparing the terms of Equations [A.11] and [A.12] with the corresponding terms of
Equation [1] and the appropriate edge coefficients, Equations [7a], shows that

A[a](ﬁl) _ cosh 87 sinh 81 - cos BI.sin B!
sinh? 81 - sin? g1
A[S](Bl) _ cosh B1.sin B3I ~ sinh BI . cos B!
sinh? Bl - sin? Bl
[A.13]
. 2 .2
A[l](Bl) _ sinh® 81 + sin® 81
sinh? Bl - sin? Bl
A[”(ﬁl) _ 2sinh 8l . sin 81

sinh? 87 - sin? g1

The other two lambda functions, namely, Al2] ang A[S], enter into the equations for the
edge rotations of the shell element, and expressions for these two functions are derived next.
When Equations [A.9) are substituted into the first derivative or slope function, Equation

l
[A.4], the slopes at the two edges of the shell element, i.e., at z =12 P for the right and left
edges, respectively (see Figure 7), are given by:
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dw (Qr-9L) (Qr+@
(sinh? 81 -sin? 1) l:d-:] R (sinh Bl+sin B1)2 ¥ -R—+-—L—) (sinh Bl-sinBl)2 +

x=iiz 4pg? 4DB2
(M, -Mg)
- W (cosh Bl +cos Bl)(sinh Bl+sinBl) + [A.14]

Mp+M
t(R+ L)

207 (cosh Bl -cos BI) (sinh 81 ~sin B81)

For those terms in Equation [A.14] which have the double signs, it is intended that the upper
sign apply to the right edge and the lower one to the left edgel.
Thus the rotation at the right (R) edge, i.e., at z =+ 7 is expressed in terms of the

applied edge shears and edge moments by the following:

dw, Qg /sinh?Bl+sin? gl Q, [ 2sinhpl-sinBl
2] e 22y ). & ).
dz vt 2DB2 \ sinh? B1-sin2 g1/ 2DB? \ sinh? Bl-sin2 Bl

(A.15]

Mg ( cosh Bl.sinh Bl + cos Bl sin B8 )
+
sinh? gl - sin? BI

M ( cosh B1.sin B! + sinh Bl.cos B >
sinh? 81 - sin? 8!
!

and the rotation at the left (L) edge, i.e., at 2= - ik is expressed in terms of the applied

edge shears and edge moments by the following:

dw, Q, ,sinh?Bl+sin? 8l Qg ¢ 2sinhBl.sin g8l
+ |— | =40 =+ ( ) - ( >+
% 2082 \ sinh? B1~sin? BI 2DB? \ sinh? g1 -sin? I

M cosh B1.sinh 8¢ + cos Bl sin B
L ( ) + [A.16]

bp sinh2 gl - sin? I
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+  —

Mg ( cosh B1.sin Bl + cos BI.sinh 8! )
D8

sinh? 81 - sin2 81
Comparing the terms of Equations [A.15] and [A.16] with the corresponding terms of

Equation [2] and the appropriate edge coefficients, Equations [7a], shows that the remaining
two lambda functions, besides those defined by [A.13], are given by:

A[2](Bl) - cosh B7-sinh 87 + cos 81 sin 81
sinh? Bl - sin? 87
[A.17]
A[sl(ﬁl) _ cosh Bl.sin Bl + sinh 8l - cos Bl

sinh? 81 - sin? 87

Consequently, the set of functions defined by Equations [A.13)] and [A.17] are exactly those

given as Equations [8] earlier in the report.
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APPENDIX B

DEVELOPMENT OF EDGE COEFFICIENTS AND EXPRESSIONS FOR THE
RADIAL AND TANGENTIAL STRESSES OF A CIRCULAR ANNULUS

With reference to Equation [5] and Figure 5, it has been assumed that the edge moments
M4, axial thrusts P4, and surface pressure p do not give rise to any radial displacements w
in the plane of the circular annulus. Only the inplane forces~H‘.A and HiA acting on the outer
and inner circular boundaries, respectively, of the annulus give rise to such deformations.

On Page 418 of Reference 6 the following expression is given, based on the Lame or
plane-strain solution for a thick-walled tube subjected to simultaneous internal pressure p;
and external pressure p:

P (L=) (072 ~porg) + (L+0) (p;=po) rPrd
) = (B.1]

rE (1-02 - riz)

where r, and r; are the radii to the inside and outside circular boundaries, respectively, of
the tube, and p; and p, are the radial pressures acting on the inside and outside surfaces,
respectively, of the tube. The variable ‘‘¢’’ is the radial distance from the axis of the tube
to a point in question through the thickness of the tube wall,

Adapting the solution, Equation [B.1], to the present problem of the circular annulus,
we see that

o = I?,.; = R’.
[B.2]
HA HA
Po=+ = »Pi=- e

Substituting [B.2] into [B.1] and adapting the sign convention of Figure 5 for positive radial
displacement, we obtain the following results:

_ (L= HARR+HARD) + (L) (HA + HATRR?
~B(r)= - S [B.3]
rE4t (R2 - R

To find the edge coefficients giA, g‘.‘?, gl.A, and gl.’} appearing in Equation [5] and its counter-
part in which ¢+ j and j+4, it is only necessary to substitute the following successive four con-
ditions into the basic solution, Equation [B.3]:
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To get giA: set r=§i; HI.A =0; HA =1 (B. 4]

A .. pA 7Y
g” H f=Ri, Hl =I., }ii --0 [B. 5]
4., =R.: HA =1: HA =
gj r—RI., Hi 1; H; 0 (B. 6]
4. =R.: HA =0: HA =
9fi r=R;; HY =05 HP =1 [B. 7}

Thus conditions [B.4], [B.5], [B.6], and [B.7] when substituted into Equation [B.3] lead to
the following equations, respectively:

(1+v)§i2f?iz 1 1-v E;’

o = —‘*( )—7 8. 8
EAt(RZ-RP) LB, \1+v/ E]
(1+v)B2R? 2\ 1

A I

%ij = TA, 72 n2 ( )T [B. 9
EAeR2-RP) | \1+v/ E,
(1+RIR? [1 1-vy\ R,

A_ __ P T 1L B

T pAnRA-RY) LR, +(1+u>k'.2 (5101

] ] ] )

. (1+v) R2R? 2\ 1

gl = 1 2 =2 < )T [8.11]
EA(RE-BY [ \1+v] B,

With ¢»1, j»2, and ¢=n,, Equations {B.8], [B.9], [B.10}, and [B.11] become exactly Equations
[10a], respectively.

For expressions [6] for the edge rotations of the annulus, symmetry and loading con-
ditions for a typical bay of the web-stiffened sandwich cylinder far removed from end effects
dictate that these rotations not only total zero but each and every component is zero. The
more general case shown in Figure 5 and reflected by Equations [6] will be considered in a
separate report.

Equations [18] and [19] for the radial and tangential stresses, respectively, in the cir-
cular annulus are derived next by following the solution given on Pages 415 to 418 of
Reference 6. The plane-strain theory applied to the axisymmetric elastic deflections of a
thick-walled tube results in the following differential equation:

d?u 1 du u
s o= =0 (B.12]
dr? r dr r2



where u is the radial displacement at a point in the wall of the tube at a radial distance ‘‘s"’

away from the axis of the tube. The solution of Equation [B.12] is given by:

u(r) = Ar + —
r

[B.13]

The integration constants ‘‘A4’’ and ‘‘B’’ are determined from the following deflection boundary

conditions:

Substituting the conditions [B.14] into the solution [B.13] gives:

Ap Ap
4. (wi Ri‘“’j Ri)

2 2
E; —R,-
Ap Ap
B-—--RiR,- ——
R2-R?

(B.14]

(B.15)]

In Reference 6 the radial and tangential stresses, respectively, as a function of the

distance *‘r,’’ are as follows:

EA [du u |

o,= — +v—
(1~v?) Lar r
EA © du’]

o, = - +y —
1-v? Lr dr _

Substituting the deflection u (r) and its first derivative
Equations [B.16] and [B.17] yields:

[ 4 B 1]
or=EA - . =
_(l—v) (1+v) 2
[ 4 B 17
ol=EA + -
(1-v) (1+v) 2

28

(B.16]

[B.17]

from Equation [B.13] into

(B.18]

{B.191]



Note

o, +0,= or4 = constant [B.20]

(1-»)

which is a consequence of the plane-strain assumption, i.e.,
1 %4
€, =~ - (0, + 0,) = constant [B.21]

Equation (B.21] results by putting the axial stress ¢, equal to zero in the three-dimensional
Hooke’s law.

The maximum radial stress o, occurs on the outer boundary of the annulus, i.e., at
whereas the maximum tangent';‘;lxstress o, occurs on the inner boundary, i.e., at
r= 1?1.. This together with 7+1 and j-» 2 results irT‘E‘quations [18] and [19].
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APPENDIX C

DEVELOPMENT OF EXPRESSIONS FOR THE SHELL STRESSES,
EQUATIONS [11] THROUGH [14]

In Reference 7 Salerno and Pulos developed a theory for the axisymmetric elastic
deformations and stresses in a ring-stiffened, perfectly circular cylindrical shell subjected to
uniform external hydrostatic pressure. Equations developed by these authors for the critical
shell stresses arereviewed here and adapted to the present problem of the two coaxial cyl-
inder elements comprising the web-stiffened sandwich cylinder structure; see Figure 1.

From symmetry considerations (Figure 4), the general solution for the bending defor-
mations, i.e., Equation [A.3], simplifies to:

wy(z) = C, cos Bz -cosh Bz + C,sinBz-sinh Bz {C.1]

The particular integrals to the differential Equation [A.1], which constitute the membrane
deformations and which must be added to the bending component [C.1] to get the total deflec-
tion, are given by Equations [16] for the outside and inside cylindrical shells, respectively.
The loading condition to which Equations [16] apply is shown in Figure 1. The total deflec-
tion can thus be written in the following form to apply to both cylinders:

(@) = wy(z) + wP = C, cos Bz.coshBz + C, sin Bz-sinh Bz + wP [C.2]
The first derivative or slope expression is then given by:

dw ()
de

=(C,+C,)BcosBz-sinh Bz - (C,-C,)BsinBz.coshBz [C.3]

The integration constants C, and C, are determined from the following deformation
boundary conditions:

1 dw

* s o= wS: =760°=0 [C.4]

atz:; i l’d_z i

When the conditions [C.4] are substituted into Equations {C.2] and [C.3], the constants C,
and C, are found to be:
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l l l
cos % -sinh—g— +8in % .cosh %-l A[G] .ﬁ_)
Cp=+(w® - wP) 7 ; 7 7 = - (uwP ~u®) A
cosh B - sinh £ +sin Bl . cos Bl Al2] (___)
2 2 2 2 2
[C.5]
l l l
cos El - sinh E— -sin E— «cosh —@ A[S] (E—)
2 2 2 2 2
Camm (ot =uh) 8l Y [
cosh — .sinh E— +8in = .cos E— A[2] (.@_
2 2 2 2 2

where the lambda functions A[2], A[S], and Al®) are defined by Equations [8].
The principal stresses in the longitudinal and circumferential directions of the shell

elements are given by the following expressions, respectively:

P
oy =- 3 +0,.3 [C.6]
w P
a(b=—E-E-v-i; +vo g [C.7]

where the first term in Equation [C.6] and the first two terms in Equation [C.7] are the
corresponding membrane stress components and the remaining terms are the bending components.
In terms of the shell curvatures, the stress expressions [C.6] and [C.7] become (see, for
example, Reference 7):

2
+ Eh . d“w(z) (C.8]
2(1-~12) dz?

>|

aX(a:) = -

w(2) P vER d?w(z)
op(2)=-E —— -y — % : [C.9]
¢ B A 9@-u?y  dg?

Substituting the deflection w(z) and the second derivative of w(z) from Equation [C.2] into
the above, gives the following equations:
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2
P, EAB

oy(@)=-— % — [-C,sinBz.sinh Bz + (,cos Bz cosh z] [C.10]
Ao (1-v%
£ Cyr, wag?
op(2)== = wP-v— +E -— T C,| cosBz.coshBz+
k (1—V2) i

(C.11]

Co, wagr T ,
-E z c sin Bz «sinh B

Once the constants C, and C, as given by Equations [C.5] are substituted into
Equations [C.10] and [C.11], the distributions of total longitudinal and total circumferential
stress between adjacent supporting elements, imposing the restraint conditions defined by
[C.4] on the shell ‘‘edges,’’ can then be determined.

Of particular interest are the critical stresses that occur at a point between adjacent

supporting elements, i.e., at z = 0, and immediately at a supporting element, i.e., at
l
z=1 ~  see Figure 4. These critical stresses are found from Equations [C.10] and [C.11]

<&

to be:

AT MIDBAY (z =0):

P Eng?
S Ly (C.12]
Ba-v?
C 2
E P 1
U(Dm = e — wp -y - + E [" — % Vhﬁ 04 [C-13]
R h R (1-V2)

AT ASUPPORT (2 =% — ):

i3
2

P | Eap? ! l ! l
oxf=== t A [—01sin 13— «sinh B— + 04005—5— .cosh —é—] [C.14]
h (1—1/2) 2 2 2 2
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I+

E P Cy hB2 ! !
op=~ 5 wP —v-— +E [—— vhp 04] cosE -coshg +
R A R (1-V2) 2 2

[C.15]

1+

C 2
4 h l {
-E [ — vhp 01 sin E— «sinh E
R (1-*1/2) 2 2

The substitution of Equations [C.5] for the constants C, and C, into Equations [C.12]
through [C.15], and the introduction of the lambda functions defined by Equations [8] into the

resulting expressions lead to Equations [11] through [14], respectively, for the critical shell
stresses.

l

The total deflections at midbay, i.e., z = 0, and at a web stiffener, i.e., z = 3

be found by using Equations [C.2] and {C.5]. These are, respectively:

Ale] (Pl)
w(0) = = (wP -w®) _\?) + wP [C.16]

A[2] (ﬂ)
2
w <.E.) - M I:A[ﬁl <ﬂ> cos E—l - cosh —B—l-
2 RS (m) ) 2 2

, can

(C.17

+ A[S] <£l) sin El - sinh EZ-] + uP
2 2 2
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APPENDIX D

DETERMINATION OF AXIAL-PRESSURE LOAD DISTRIBUTION
TO THE TWO COAXIAL CYLINDERS

With reference to Figure 8, if it is assumed that the web elements do not resist any
axial load, then force equilibrium in the longitudinal direction requires that

| P
P, A -
L | 1 P2 —
P2 ? y Pe T __ Figure 8 ~ Distribution of Axial-Pressure
he o - Load to the Two Cylindrical Shells
- RI
M =’
R2 —
| -—
PR}
B R, + FR, -3 (D.1]

where the axial stress forces P, and F, in the outer and inner cylindrical shells, respectively,
are the unknown quantities to be determined. To find explicit expressions for F and P,
another relationship between these quantities, the applied pressure p, and the geometry of
the shells is needed.

If it is assumed that both cylindrical shells displace the same amount longitudinally,
i.e.,

u, = u, (D.2]

then the integral of the longitudinal midthickness strains over a stiffener spacing for each of
the two cylindrical shells must be equal. Therefore,

/2 /2
j;) (¢,‘M)1 dz =f0 (¢xM)2dz (D.3]

Equation [D.3] is a consequence of the strain-displacement relation

€, = — {D.4]
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Introducing the two-dimensional Hooke’s law,

-~
[

=5 (ax—vaqs)

(D.5]
1
(¢ = E (0¢ Vax)
into Equation [D.3], we obtain
172 /2
{) [(1—v2)axM-vEs ¢¢M]ldz =f0 [(l—uz)axM—vE’s(qSM]z dz [D.6])

Since the longitudinal membrane stress and the circumferential membrane strain in each of
the two shells are given, respectively, by:

>|

IuM

[D.7]

x| 8

‘¢M = [D-S]

then Equation [D.6] becomes:

172 [(H%P1 wl(z)] 2 F1-v}) B, w, (2)
j -v dz = S -y dz (D.9]
0 E*‘Ia1 Rl

R
° E‘h2 2

Substituting the deflection function [C.2] together with the appropriate expressions
for the membrane deflections w! for each of the two shells from Equations [16] into Equaticn

[D.9], carrying out the indicated integrations, and finally introducing Equations [24], [22],
and [21] into the resulting expression, we obtain
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A[l](ﬁi)

:-l;c
/-"‘\
'm
~

1,2 2 vE* 2 (y ", .7 H) 2
P e B A -z
R, g1 1 172 3,1
1 P1 ZA[2] (ﬂ) P1 Al2] (’_1)
2 2
B!
[1] __1_>
pl 2 A (2
hl ﬁll A[2] &f)
2
8,1
P A[l] _Z_)
=__2_ 1_,,2.1. 2
h2 621 A[z] (&E)
2
l
A(l] (_ﬁi
vES 2 2
“®, B (95 Hy + THH,) ——————-[2] (le [D.10]
A 2
2

Equations [D.1] and [D.10]} constitute two equations in the two unknown forces F, and

E,; when they are solved simultaneously, the following expressions are found:

1 B, vESh, iy VESh,
PR, [v(l—(ll) t3 7, (1—1/202)} § — (gl"lll +giH)a, ~ —32_ (g2 H +g2 Hpa,

Rl
A= {D.11]
thl
1-2a, + (1-v2a,)
R2h2
R, 1R, VE’h, _ VE*R A,
PR, | ~v(1-a,) — ¢ —— 1y 2a)) (9fh, + gftnya, + (gfh,+gfna,
R, 2R, R, B2
B = ‘ W) [D.12]
y 2 1 2
1-v2a, + R (1-v2ay)

36



where

A[l] <ﬂ) A[l] /ﬁ-z—l)
a,-— 2/ g, 2 (D.13]
17 8 B2 T '
) e )
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